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CLASSIFICATION OF TWO-DIMENSIONAL ISENTROPIC GAS FLOWS OF DOUBLE-WAVE TYPE®

S.V. MELESHKO

A complete classification of two-dimensional isentropic gas flows of
double~wave type (see /1 -~ &/) when there is functional arbitrariness in
the general solution of a Cauchy problem is given. Double waves were
discussed earlier in the case of potential flows /1/. After replacing

the potentiality conditions of the flow by the weaker condition regarding

the rectilinearity of the contour lines (see /2/), a complete classification
of two~dimensional isentronic gas flows of double-wave tType with etraight
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contour lines is given.

The gas-dynamic eguations of a polytropic gas in the two-dimensional isentropic case can
be written as
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where (v, v,) are the gas velocities, ¢ is the velocity of light, and y denctes the polytropic
exponent of the gas.
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It is required that & travelling wave /1/ has, for a fixed function 6= 0(x.1,), v vy = 1
an arbitrariness regarding at least one function in the general solution of the Cauchy problem.
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general solution has two arbitrary functions of one argument, and therefore we assume that
8,> + 8,25 0. Then by rotating the coordinate system we can always contrive that in the new
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system, in a certain neighbourhood V of the point (&5 v,°) of the velocity locus, the ineqguality
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will hold.

Further analysis is based on the fact that any consistent system of differential equations,
after a finite number of extensicns becomes an involutive systen (see /7, 8/). If a system
of differential equations is invclutive, thern the functional arbitrariness in the solution is
determined by Cartan's characters which are comnected in a definite way with the higher
parametric determinants (see /7/}. For solutions to exist, which have a functional
arbitrariness, it is necessary that the rank of the matrix of the coefficients of the higher
derivatives should not be egual t¢ the number of all higher deravatives {under whatever
assumptions) .

On substituting © = 8 (1;. 1) into Eq. (1} we obtain a system of guasilinear differential
equations which is not involutive. It is necessary to extend this system when investigating
it for consistency. Partially extending it, we change tc the dependent variables vy U, Uz ==
dv,’6r, — dr,'0r,. and obtain an overdetermined system of five quasilinear first-order differential
equations
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(py = 6v, ox; 1 =1.2.3:] = 01, 2z, =1)
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Investigating this system for consistency, we obtain one more first-order equation

Dy, + kﬁl (v, ~ 8,) Dy®@1 L 0, (8,2 + x6) DD, + (%)
lengt;)z — 10,51 — 20,0,D, S, — 2D, S, =
%8 (8:p,° — 0:p:%) — ; }.22'—1 bk pc* + s (a1pa! + @2Pa? 4 vats) =0
where D; (i = 0,1, 2) are total derivatives with respect to z;, and the coefficients by, a; (i,
k=1,2;j=1,2, 3)depend on v, and 1, only. Here we do not give the forms of b; and g

since they are somewhat cumbersome.
Thus, the continuous solution of system (3) necessarily satisfies Eq.(4), and we can
deduce the following. Firstly the vortex-free isentropic double waves (v; = 0) either have two

arbitrary functions of one argument in the general solution of the Cauchy problem, or by the
theorem on the reduction of double waves they are reduced to invariant solutions (see /9/).
We therefore discuss below the turbulent solutions (vs %= 0). Secondly, the maximal arbitrariness

in the sclution of a two-dimensional double isentropic wave for the specified function 6 =
6 (v,, 1) is possible regarding three functions of one argument.

It can be shown that system (3),(4) is involutive only in the case when
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(¢, , and ¢, are arbitrary constants). Here Eq.(4) takes the form
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and the solution of system (3),(4) has three arbitary functions of one argument. Earlier, in
classifying two-dimensional isentropic double waves with straight contour lines, such an
equation for double waves was obtained in /2/, but the arbitrariness of the solution there
indicated consisted of two functions of one argument, that is, the requirement of rectilinearity
of the level reduces the, arbitrariness to two functions of one argument. We will exclude the
double-wave equation in the locus space from further discussion.

If conditions (5) are not satisfied, system (3), (4) is not involutive, and it is necessary
to extend it when checking for consistency.

After extending the system by introducing dependent variables v, = p, and v, = p,?, and
investigating the overdetermined system of ten guasilinear first-ocrder differential eguations
in the dependent variables Uy, ls.... Uy, as was done for system (3), we obtain one more first-~
order equation

5
123 Qipy' = Qg=10 (6)
In the above, the coefficients Q; = Q; (r;....,t5) (i = 3. 4. 3)are linear functions of 1. 1.

and U;. The form of these functicns, being lengthy, is not given here,

It follows from the form of the overdetermined system of quasilinear differential equations
in vy, vy, . ... Us that the parametric derivatives of higher order for the (@ — 1)-th extension can
be &v;i0r%(i= 3,4.5) only. Therefore, from among Cartan's characters responsible for the
functional arbitrariness, only the first (o,) is non-zero, and at the same time the inequality
0<{ 0, <3 holds.

If the system is in involution with Cartan's character then ¢, functions of one argument
are arbitary in the general sclution of the Cauchy problem. Therefore the maximurm possible
arbitrariness regarding three functions of one argument is achieved only when

Q=0 (i=3,4,5) O]

otherwise o0,<C3. It follows from the form of the coefficients (; that the identities (7)
are satisfied only when conditions (5) holds. Therefore, Qg + Q2 + Q2= 0.

After twice extending the overdetermined system of quasilinear differential equtions in
U1, Vg, . - ., Uy and compiling the linear combinations by excluding the main derivatives relatively

to pm' (i =3,4,5), we obtain the following system of four linear algebraic equations:
5 :
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where the functions f; (i =1, 2, 3, 4) depend on derivatives of order not higher than the second.
Because of the linearity of the extended systems with respect to higher derivatives,
the process of constructing the linear combinations (8) can be performed in matrix form,
which makes the mathematical operation much’ simpler.
It follows from (8) that for arbitrariness to exist in the general solution of the
Cauchy problem it is necessary to satisfy the equation

(((612 + 922) Qs - 61205)2 - 042) (¢2042*261920405 + ‘P1052)=0 (9)

which is an algebraic equation in vy, Uy, ..., Us. Extending (9) and performing an analogous
investigation of the matrix consisting of the coefficients of the higher derivatives, we
arrive at only two cases: either by the reduction theorem /9/ a double wave is reduced to an
invariant solution, or a constant f§ > 0 exists such that 6,2 — B8, = 0. (The lengthy intermediate
operations are omitted: here we give the final result only.

In the latter case, we can achieve satlisfaction of the egquation 8, = 0, that is 6 =
8 (v;,) +» by rotating the coordinate system.

Consider the case when 8, = 0. Substituting® = 6 (v,)intc (3) and repeating the similar
investigation regarding the existence of solutions of system (3) which possess functional
arbitrariness, we arrive only at the case where p,) =0, Then, by the fourth equation of
system (3) we have p,,? = —D, ({;,p,'4,)= 0, and therefore

Up = T8y {1y, 1) + g {7y 1)

On substituting this expressicn into (3), and splitting S,, we obtain a hyperbolic

system of three eguasilinear differential egquations in ¢, (x,. ). g; (2. &3 (i = 1. 2)
Gz ar, R
L _ =0 =1.2 )
- ~ i g 0 (i=1.2) (10)
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This system is easily checked for consistency by cross differentiation. In the case of
non-vortex flow (g, = (', we have either

S oy B oy O LT ary )
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that is the functions 1.0 satisfy the equations of a simple wave as in the one-dimensiocnal
case, or

vy o= eonstovy =g oy — oyt (12
(¢. 1z is an arbitrary functicrn). For vortex flow (ry== ), the function 6 .- 8 (r) should satisfy
the ordinary third-order differential eguation
Y, (1 — 8% o, — =B (1~ 87 — 67 (x6y,87 — (13;
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and the functions U, (7. 1. g (u1.7}(i = 1.2) satisfy the overdetermined system of first-order
differential equaticns . 5-
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which is in involution and has an arbitrariness regarding one function of one argument (for
example, g, (z,. 0))in the general sclution of the Cauchy problem.

Thus, we have presented the full classification of two-dimensional waves which have a
functional arbitrariness in the general solution of Cauchy problems.

Theorem. The two~dimensional isentropic double waves possessing a functional arbitrariness
in the general solution of the Cauchy problem for a given function 8 = 0 (v,, 1) have the
following forms only:

1) double waves reduced to invariant solutions;

2) double waves (5) which possess arbitrariness regarding three functions of one argument;

3) vortex-free double waves which possess arbitrariness regarding two functions cf one
argument;
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4) double waves with 6 (1;), in which the arbitrariness is determined by one function of
one argument v, = U, (2, &), Uy = Zofy (21, 1) + g (z,. 1) , and the following holds: a) condition
(11) or (12) for g, =0, b) equations (13) and (14) for g 0.

The process by which this classification was established is a generalization of /1/, and
it can be successfully used for other types of gas flow., For example, for vortex-free
isentropic flows of a treble-type wave (see /10/) a solution with maximum possible arbitrariness
regarding two functions of two arguments exists only when

3
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Here the travelling wave with z; —¢;¢=1II; (i = 1,2, 3), where the function IT (vy. v, v)
satisfies the equation
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will be the solution.

As remarked by A.F. Sidorov, after the change 2, =ux; — ¢t (i =1,2,3), a case simply of
space potential stationary motions will be obtained in x,’ coordinates (all motions are treble
waves). The representation (15) of 6 will correspond to the Bernoulli integral, and equation
(16) for Il (v,. v,, v3) will correspond to the equation for the velocity potential, transformed
by the Legendre change.
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